
Cool Things
in Perl 6

brian d foy
brian@stonehenge.com

May 3, 2008

• I'm not a Perl 6 contributor

• Not about the implementions

• Not about new syntax for old things

• About new features not in Perl 5

• Stuff that makes me want Perl 6

• Cribbed from the Synopses
http://feather.perl6.nl/syn/

• Some of this might not work yet

Caveats

• Most languages can do the job

• But how much code does it take?

• And where does that code live?

• What's a primitive and what's built-in?

Stuff I want

• Junctions

• New list techniques

• Meta operators

In this talk

Junctions

• A junction is a single value that is
equivalent to multiple values

• Useful with comparisons

• Parallelizable

• Short circuitable

Any
• | or any()
if $x == 1 | 2 | 3 { ... }

if $x eq any(q:w(a b c))

 {...}

• Mutable
(1 | 2 | 3) + 1; # 2 | 3 | 4

All or one
• & or all()
if $x > ($i & $j & $k) {...}

if $x > all($i, $j, $k) {...}

• ^ or one()
if $x == ($i ^ $j ^ $k) {...}

if $x == one($i, $j,$k) {...}

none

• none()
if $x eq none($s, $t, $u)

 {...}

Easy lists

Fancy ranges

• Lists can be unbounded
0 .. *

• Not consecutive
0 .. 100 :by(3)

Exclusive ranges
• Exclusive lists
1^..^10 # 2,3,4,5,6,7,8,9

• 0 up to one less
^5 # 0,1,2,3,4

Multiple lists

• Zip lists to iterate over them together
for zip(@a, @b) -> $a, $b {

say "Got $a and $b" }

• Stops at shortest list

Feed operators

• Directs output to a "sink"
@in ==> map {...} ==> @out

@out <== map {...} <== @in

• Source is lazy

• Allows parallelization

Multiple sources

• Stack multiple sources with ==>>

• Looks ahead for sink
source1() ==>>
source2() ==>>
source3() ==>>
sink();

Meta operators

Superpowers

• Give normal operators super powers

• Make common operations even easier

• Remove messy looping monkey code

• Assignment

• Negated relational

• Hyper

• Reduction

• Cross

Five types

Assignment
• Binary assignment like C and Perl 5

• Normal assignment
$count = 5;

$count = $count + 1;

$count += 1;

• Mostly with scalar operators in Perl 5

More operators
• More operators (instead of builtins)

• The , operator to make a list
@array = 1, 2, 3;

• Binary assignment is a push
@array ,= 4, 5, 6

Negated relational
• Put a ! in front of a comparator
if $version !== 6 { # or !=

say "How are we here?" }

if $version !> 5 {
say "Here again?!" }

• Think "isn't greater than"

Hyperoperators
• Obviates looping for single

operations

• Applies operation to each element
@numbers >>++;

@negatives >>-;

• Can do either way
@negatives = -<<@positives;

• Surround an operator with angle
brackets (no extra spaces)

>>op<< <<op>>

>>op>> <<op<<

• Makes new list

• Also with french quotes
»op« «op» »op» «op«

List on list

>>op<<

• List on the left and right

• One element from each for result
(1,2,3) >>+<< (4,5,6) # 5,7,9

• Intersection of hash
%foo >>+<< %bar

Hypergwimmery
• Guess What I Mean (GWIM)

• Pointing one way GWIMs on that side

• One side is "shaped" differently
(1,2,3) >>**>> 2 # 1,4,9

• Doesn't matter which side
'.jpg' <<~<< q:w(a b) # a.jpg b.jpg

@numbers >>max>> 2

Doublegwimmery

• Which side needs shaping?

• Point all arrows outward

• Perl guesses
@a <<+>> @b

Reduction

• Finally, a built-in reduce
my $summerial = [+] @numbers;

my $factorial = [*] @numbers;

my $ascends = [<] @numbers;

Pseudo reduction

• Keep the intermediate results with \op
[\+] ^4; # (0, 1, 3, 6);

• Produce a triangle list
[\,] ^4

([0],[0,1],[0,1,2], [0,1,2,3]);

Cross operator

• Make tuples with X
q:w(a b) X (1, 2)

(a, 1),(a,2),(b,1), (b,2)

Hypercross

• Perform the operation on all tuples
(1,2) X~X q:w(a b)

1a, 1b, 2a, 2b

Questions

